155 research outputs found

    Fast Electron Thermometry for Ultrasensitive Calorimetric Detection

    Full text link

    Nonequilibrium Relaxations and Aging Effects in a Two-Dimensional Coulomb Glass

    Full text link
    The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time t_w. Two types of response have been observed: a) monotonic, where relaxations exhibit aging, i.e. dependence on history, determined by t_w and temperature; b) nonmonotonic, where a memory of the sample history is lost. The conditions that separate the two regimes have been also determined.Comment: 4 pages; published versioi

    Observation of Mass Transport through Solid 4He

    Get PDF
    By use of a novel experimental design, one that provides for superfluid helium in contact with bulk hcp 4He off the melting curve, we have observed the DC transport of mass through a cell filled with solid 4He in the hcp region of the phase diagram. Flow, which shows characteristics of a superflow, is seen to be independent of the method used to grow the solid, but depends on pressure and temperature. The temperature dependence suggests the possibility of hysteresis.Comment: 1 zipped file, produces 16 page paper, with 20 figures; resubmitted with typos corrected, a figure corrected, some discussion improved, and additional references - still 16 pages and 20 figure

    Radio-Frequency Single-Electron Refrigerator

    Get PDF
    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunnelling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of kBT×f\sim k_{\rm B}T \times f at temperature TT over a wide range of cycle frequencies ff. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of kBT/Δ\sim k_{\rm B}T/\Delta, where Δ\Delta is the superconducting gap. The performance is not affected significantly by non-idealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation.Comment: 5 pages, 4 figures; corrected typos, language improve

    Adiabatic Magnetization of Superconductors as a High-Performance Cooling Mechanism

    Get PDF
    The adiabatic magnetization of a superconductor is a cooling principle proposed in the 30s, which has never been exploited up to now. Here we present a detailed dynamic description of the effect, computing the achievable final temperatures as well as the process timescales for different superconductors in various regimes. We show that, although in the experimental conditions explored so far the method is in fact inefficient, a suitable choice of initial temperatures and metals can lead to unexpectedly large cooling effect, even in the presence of dissipative phenomena. Our results suggest that this principle can be re-envisaged today as a performing refrigeration method to access the microK regime in nanodevices.Comment: 4 pages, 3 color figure

    Hot electron cooling by acoustic phonons in graphene

    Full text link
    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on TVT\propto\sqrt{V} behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ\Sigma in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ\Sigma, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.Comment: 5 figure

    Magnetocaloric Study of Spin Relaxation in `Frozen' Dipolar Spin Ice Dy2Ti2O7

    Full text link
    The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is proposed that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near to 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron scattering results. In addition, magnetic dilution of 50 % concentration was found to significantly prolong the dynamical response in the milikelvin temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.Comment: 9 figures, submitted to Phys. Rev.

    Specific Heat of the Dilute Ising Magnet LiHox_xY1x_{1-x}F4_4

    Full text link
    We present specific heat data on three samples of the dilute Ising magnet \HoYLF with x=0.018x = 0.018, 0.045 and 0.080. Previous measurements of the ac susceptibility of an x=0.045x = 0.045 sample showed the Ho3+^{3+} moments to remain dynamic down to very low temperatures and the specific heat was found to have unusually sharp features. In contrast, our measurements do not exhibit these sharp features in the specific heat and instead show a broad feature, for all three samples studied, which is qualitatively consistent with a spin glass state. Integrating C/TC/T, however, reveals an increase in residual entropy with lower Ho concentration, consistent with recent Monte Carlo simulations showing a lack of spin glass transition for low x.Comment: 10 pages, 3 figurs, accepted for publication in Phys. Rev. Let

    High-Temperature Superconducting Level Meter for Liquid Argon Detectors

    Get PDF
    Capacitive devices are customarily used as probes to measure the level of noble liquids in detectors operated for neutrino studies and dark matter searches. In this work we describe the use of a high-temperature superconducting material as an alternative to control the level of a cryogenic noble liquid. Lab measurements indicate that the superconductor shows a linear behaviour, a high degree of stability and offers a very accurate determination of the liquid volume. This device is therefore a competitive instrument and shows several advantages over conventional level meters.Comment: 13 pages, 11 figures. Accepted for publication in JINS
    corecore